DOE/OE Transmission Reliability Program

Damping Inter-area Oscillations through Decoupled Modulation

Henry Huang, Ruisheng Diao, Renke Huang, Jamie Lian Pacific Northwest National Laboratory zhenyu.huang@pnnl.gov June 10-11, 2015 Washington, DC

Complex interactions of multiple interactions of multiple interaction area oscillation modes

- 0.17 Hz N-S mode
- 0.32 Hz Alberta mode
- 0.5 Hz E-W mode
 - 0.55 Hz Montana mode

Credit: Dan Trudnowski

Controller design facing interference between oscillation modes

Problem formulation and objective

- Problem interference of modes:
 - Design Issue: Signal selection is more complex and constrained by signal availability
 - Design Issue: Parameter tuning is more limited due to compromises
 - Operational Issue: Possibility of adverse impact on damping of one mode while improving damping of another mode
- Objective minimize interference in modulation control:
 - Develop a modulation control that decouple the modes
 - Enable multiple modulation controllers, one per mode, at the same location
- Opportunities:
 - Wide-area phasor measurements
 - Available HVDC and FACTS devices, e.g. PDCI

Technical approach: decouple mode interference by decoupling signals

Major accomplishments planned in FY15

- FY15 focus Proof of Concept to answer the following questions:
 - How much is the interference?
 - How well can we decouple the signals in real time?
 - How effective is the decoupling in improving damping (non-linear effect)?
 - How well would multiple controllers work together (superposition)?
- A technical report will be delivered in May 2016.

Deliverables and schedule

#	Milestone/Deliverable	Target Date
1	Proof-of-concept studies of decoupled modulation control using simulated data with comparison against traditional modulation control.	11/30/2015
2	Development of real-time signal-decoupling methods to separate frequency contents.	2/29/2016
3	Technical report of the design of decoupled modulation control.	5/31/2016

Note: this is a new effort under CERTS, with a start date of 5/15/2015

Risk factors

- Wide-area modulation design
 - Mitigation: leverage synergy with other CERTS efforts.
- Prototype testing
 - Mitigation: leverage probing testing efforts in WECC.
- Implementation
 - Mitigation: engage appropriate industry groups (e.g. JSIS) and stakeholders (e.g. BPA)

Follow-on work in FY16

- Design of decoupled modulation control based on decoupled signal contents
- Evaluation of decoupled modulation control with small- to medium-size test systems

Impact: Better damping with decoupled modulation

Map Credit: John Hauer Easier signal selection GM SHRUM and parameter tuning SUNDANCE Less concern about negative operational CANADA Phasor Data impact COLSTRIP Signal collection/filtering Signal decoupling Mode 3 Mode 2 Mode 1 Modulation MEXICO Major interaction path Modulation 'Index" generator signal: ΔP_{ref}